The plane pitches violently as it plows through the milky innards of a cloud bank. A commercial pilot would fly high above these clouds over California’s Sierra Nevada Range, but this 63-foot Gulfstream-1 seems to invite the turbulence. Updrafts grab hold of the aircraft and shove it up even as the pilot noses it down. In the back of the plane, atmospheric chemist Kimberly Prather wears headphones to muffle the roar of the propellers. She steadies herself with a hand on an instrument rack and focuses on the bobbing screen of her laptop. Readings from the clouds spool across it.
Those numbers tell Prather that these winter clouds are cold and heavy, –30 degrees Fahrenheit and just over 100 percent relative humidity. Yet despite being 62 degrees below the freezing point of water, the cloud droplets remain stubbornly liquid. As long as they don’t form ice crystals, these clouds won’t shed more than a few flakes of snow over the Sierras’ 13,000-foot peaks. They are typical clouds, teasers that won’t drop much of anything.
After two hours of flying, though, something changes. The voice of another researcher crackles over Prather’s headset: “Ice!” The plane has entered a cloud layer where suddenly every droplet is frozen. Prather’s instrument—a tangle of metal tubes, wires, and airtight chambers nicknamed Shirley—tick-tick-ticks as its laser blasts apart hundreds of microscopic cloud particles, one by one, that are drawn in from the air outside. The size and composition of each particle flash across Prather’s monitor. The specks at the heart of those ice crystals are high in aluminum, iron, silicon, and titanium, the chemical signatures of dust not from California but from faraway deserts in Asia or even Africa. There’s something else in the crystals too: carbon, nitrogen, and phosphorus, telltale signs of biological cells...
The full text of this article is available only to DISCOVER subscribers. Click through to the article to subscribe, log in, or buy a digital version of this issue.
Image: A high-altitude balloon is readied for a 2011 launch at a NASA facility in New Mexico. It carried microbe collectors up to 120,000 feet.